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ABSTRACT
A combinatorial auction mechanism consists of an allocation
rule that defines the allocation of goods for each agent, and
a payment rule that defines the payment of each winner.
There have been several studies on characterizing strategy-
proof allocation rules. In particular, a condition called weak-
monotonicity has been identified as a full characterization
of strategy-proof allocation rules. More specifically, for an
allocation rule, there exists an appropriate payment rule so
that the mechanism becomes strategy-proof if and only if it
satisfies weak-monotonicity.

In this paper, we identify a condition called sub-additivity
which characterizes false-name-proof allocation rules. False-
name-proofness generalizes strategy-proofness, by assuming
that a bidder can submit multiple bids under fictitious iden-
tifiers. As far as the authors are aware, this is the first
attempt to characterize false-name-proof allocation rules.
We can utilize this characterization for developing a new
false-name-proof mechanism, since we can concentrate on
designing an allocation rule. As long as the allocation rule
satisfies weak-monotonicity and sub-additivity, there always
exists an appropriate payment rule. Furthermore, by utiliz-
ing the sub-additivity condition, we can easily verify whether
a mechanism is false-name-proof. To our surprise, we found
that two mechanisms, which were believed to be false-name-
proof, do not satisfy sub-additivity; they are not false-name-
proof. As demonstrated in these examples, our characteri-
zation is quite useful for mechanism verification.
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1. INTRODUCTION
Mechanism design of combinatorial auctions has become

an integral part of Electronic Commerce and a promising
field for applying AI and agent technologies. Among vari-
ous studies related to Internet auctions, those on combina-
torial auctions have lately attracted considerable attention
(an extensive survey is presented in [4, 14]). Mechanism de-
sign is the study of designing a rule/protocol that achieves
several desirable properties assuming that each agent hopes
to maximize his own utility. One desirable property of an
auction mechanism is that it is strategy-proof. A mecha-
nism is strategy-proof if, for each bidder, declaring his true
valuation is a dominant strategy, i.e., an optimal strategy
regardless of the actions of other bidders. In theory, the
revelation principle states that in the design of an auction
mechanism, we can restrict our attention to strategy-proof
mechanisms without loss of generality [12].

An auction mechanism consists of an allocation rule that
defines the allocation of goods for each agent, and a pay-
ment rule that defines the payment of each winner. There
have been many studies on characterizing strategy-proof so-
cial choice function (an allocation rule in auctions) in the
literature of social choice theory [7]. This is also called the
implementability of social choice functions. If a social choice
function is implementable, we can find an appropriate pay-
ment rule so that the mechanism (the social choice function
and the payment rule) becomes strategy-proof.

In particular, a family of monotonicity concepts was iden-
tified to characterize implementable social choice functions.
For example, Rochet proposed a cycle monotonicity condi-
tion and showed that an allocation rule is strategy-proof if
and only if this condition holds [15]. Bikhchandani et al. and
Lavi et al. introduced a weaker notion of cycle monotonic-
ity called weak-monotonicity and showed that it is necessary
and sufficient for strategy-proof mechanisms under several
assumptions on possible types [3, 5, 10, 16].

Such a characterization of allocation rules is quite useful
for developing/verifying strategy-proof mechanisms. These
conditions are defined only on an allocation rule; i.e., if it
satisfies such a condition, it is guaranteed that there ex-
ists an appropriate payment rule that achieves strategy-
proofness. Thus, a mechanism designer can concentrate on
the allocation rule when developing/verifying mechanisms.

In fact, Babaioff and Blurmrosen developed a computa-
tionally feasible strategy-proof auctions for convex bundles.
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By using monotonicity, they proposed a method to convert
feasible algorithms into strategy-proof mechanisms [2, 1].
Parkes and Duong [13] used monotonicity in their ironing-
based approach for online adaptive mechanisms. Lavi and
Swamy [6] applied cycle monotonicity to develop strategy-
proof mechanisms for scheduling.

On the other hand, Yokoo et al. pointed out the possibil-
ity of a new type of fraud called false-name bids (manipula-
tions) that utilizes the anonymity available on the Internet
[19, 20]. False-name bids are bids submitted under fictitious
names, e.g., multiple e-mail addresses. Such dishonesty is
very difficult to detect, since identifying each participant on
the Internet is virtually impossible.

A mechanism is false-name-proof if, for each bidder, declar-
ing his true valuations using a single identifier (although
the bidder can use multiple identifiers) is a dominant strat-
egy. False-name-proofness is a generalization of strategy-
proofness. It is shown that the theoretically well-founded
Vickrey-Clarke-Groves mechanism is not false-name-proof [20].
Furthermore, there exists no false-name-proof, Pareto effi-
cient mechanism [20]. So far, several false-name-proof mech-
anisms have been developed [19, 17, 8]. However, there
exists virtually no work on characterizing false-name-proof
mechanisms. One notable exception is a characterization
called Price-Oriented, Rationing-Free (PORF) mechanism
presented in [17], that provides a condition on payments so
that a mechanism is false-name-proof.

As far as the authors are aware, this paper is the first
attempt to characterize false-name-proof allocation rules in
combinatorial auctions. We first identify a condition called
sub-additivity and then prove that we can find an appropri-
ate payment rule if and only if the allocation rule simulta-
neously satisfies weak-monotonicity and sub-additivity.

This characterization can be utilized for several different
purposes. First, we can utilize it for developing a new false-
name-proof mechanism, since we can concentrate on design-
ing an allocation rule, while so far central research questions
tend to address how to design an appropriate payment rule
(for a given allocation rule). As long as the designed alloca-
tion rule satisfies weak-monotonicity and sub-additivity, it
is automatically guaranteed that there exists an appropriate
payment rule to make the mechanism false-name-proof.

Second, we can utilize this characterization for clarifying
the theoretical properties of false-name-proof mechanisms.
For example, it is well-known that there exists no false-
name-proof mechanism that always achieves a Pareto effi-
cient allocation. However, we don’t know the upper-bound
of possible social surplus for false-name-proof mechanisms
yet. By utilizing sub-additivity, we can concentrate on allo-
cation rules to examine possible social surplus.

Finally, by utilizing the sub-additivity condition, we can
easily verify whether a mechanism is false-name-proof, since
the sub-additivity condition can be checked by fixing the
types of other bidders and by changing the type of a sin-
gle bidder (and his possible false-names). In short, we can
check the sub-additivity condition by examining only the
local behaviors of the allocation rule.

We have actually verified existing false-name-proof mech-
anisms and found that two mechanisms, GM-SMA[18] and
Matsuo mechanism[8], which were believed to be false-name-
proof, do not satisfy sub-additivity (thus they cannot be
false-name-proof). As demonstrated in these examples, our
characterization is quite useful for verifying false-name-proof

mechanisms. Our characterization can detect a subtle fail-
ure of a mechanism, which is very difficult to do if we rely
on standard proof techniques for false-name-proofness.

This paper is organized as follows. Section 2 describes
our model and summarizes the existing results on the char-
acterization of allocation rules. Section 3 introduces a con-
dition called sub-additivity and proves that it is necessary
and sufficient for false-name-proofness. Section 4 examines
whether the sub-additivity condition holds in existing allo-
cation rules. Section 5 concludes this paper.

2. PRELIMINARIES
Assume there exists a set of bidders N = {1, 2, . . . , n}

and a set of goods G = {1, 2, . . . , m}. Each bidder i has
his preferences over B ⊆ G. Formally, we model this by
supposing that bidder i privately observes a parameter, or
signal, θi which determines his preferences. We refer to θi

as the type of bidder i and assume it is drawn from a set Θ.
We also assume a quasi-linear, private value model with no
allocative externality, defined as follows:

Definition 1 (utility of a bidder).
The utility of bidder i, when i obtains a bundle, i.e., a subset
of goods B ⊆ G and pays p, is represented as v(θi, B) − p.

We assume a valuation v is normalized by v(θi, ∅) = 0. Fur-
thermore, we assume free disposal, i.e., v(θi, B

′) ≥ v(θi, B)
for all B′ ⊇ B. Also, we assume Θ satisfies a condition
called a rich domain [3], i.e., ∀B 	= ∅, ∀c ≥ 0,∃θi ∈ Θ,
where v(θi, B) = c holds. In other words, the domain of
types Θ is rich enough to contain all possible valuations. We
require this assumption so that weak-monotonicity charac-
terizes strategy-proofness.

A combinatorial auction mechanism M consists of an al-
location rule X : Θn → P n

G, where PG is a power-set of
G, and a payment rule p : Θn → Rn

+. For simplicity, we
restrict our attention to a deterministic mechanism and as-
sume a mechanism is almost anonymous, i.e., obtained re-
sults are invariant under permutation of identifiers except for
the cases of ties. We use these assumptions to simplify the
exposition/notations. Also, we assume a mechanism sat-
isfies consumer sovereignty [5] (a.k.a. player decisiveness),
i.e., there always exists a type θi for bidder i, where bidder i
can obtain bundle B. In other words, if bidder i’s valuation
for B is high enough, then i can obtain B.

In the rest of this paper we mainly use a single-agent
model [3], where the reported types of the other bidders
except i (denoted as Θ−i) are fixed. In general, an alloca-
tion rule is denoted as X(θi, Θ−i), and a payment rule is
denoted as p(θi, Θ−i). In the rest of this paper, when us-
ing a single-agent model, we abbreviate an allocation rule as
X(θi) and a payment rule as p(θi). When discussing some
property of the allocation/payment rule in this abbreviated
form, we assume the property is true for all Θ−i.

Let us note several desirable properties for combinatorial
auction mechanisms.

Definition 2 (individual rationality).
A mechanism M(X, p) satisfies individual rationality, if

∀i, θi ∈ Θ, the following condition holds :

v(θi, X(θi)) − p(θi) ≥ 0. (1)

This definition means that no participant suffers any loss
in a dominant strategy equilibrium. In this paper, we re-
strict our attention to individually rational mechanisms.



Taiki Todo, Atsushi Iwasaki, Makoto Yokoo, Yuko Sakurai • Characterizing False-name-proof Allocation Rules in Combinatorial Auctions

267

Definition 3 (strategy-proofness).
A mechanism M(X, p) is strategy-proof, if ∀θi, θ

′
i ∈ Θ,

v(θi, X(θi)) − p(θi) ≥ v(θi, X(θ′
i)) − p(θ′

i) (2)

holds.

In other words, a mechanism is strategy-proof if reporting
true type θi is a (weakly) dominant strategy for a bidder.

Next, we introduce a concept called implementability,
which is defined on an allocation rule X. In the literature
of social choice theory, there have been many works on the
implementability of social choice functions [7].

Definition 4 (implementability).
We say an allocation rule X is implementable if there exists
a payment rule p such that for every θi, θ

′
i ∈ Θ, Eq. 2 holds.

If an allocation rule X is implementable, we can find an
appropriate payment rule p so that the mechanism M(X, p)
becomes strategy-proof.

Now, we are ready to describe weak-monotonicity, which
fully characterizes implementable allocation rules [3].

Definition 5 (weak-monotonicity [3]).
An allocation rule X is weakly monotone if for every θi,

θ′
i ∈ Θ, the following condition holds:

v(θi, X(θi))−v(θi, X(θ′
i)) ≥ v(θ′

i, X(θi))−v(θ′
i, X(θ′

i)). (3)

Weak-monotonicity is a very simple condition on alloca-
tion rules but it fully characterizes implementable allocation
rules [3]; i.e., the following theorem holds in combinatorial
auctions assuming the domain is rich.

Theorem 1 (Bikhchandani et al. [3]). An allocation
rule X in a combinatorial auction is implementable if and
only if X is weakly monotone.

The following intuitive explanation answers why this the-
orem holds. The left side of Eq. 3 means the gain of a bidder
whose type is θi, when he reports his true type θi instead
of a false type θ′

i. The right side of this equation means the
gain of a bidder whose type is θ′

i, when he reports a false
type θi instead of his true type θ′

i.
If the right side is positive, bidder θ′

i has an incentive to
pretend to be θi. We can prevent this by charging some
payment p(θi) so that truth-telling becomes better for θ′

i;
i.e., v(θ′

i, X(θi)) − p(θi) − v(θ′
i, X(θ′

i)) < 0 holds.
However, enforcing this payment also reduces the gain

of bidder θi for truth-telling by p(θi). If Eq. 3 holds, we
can always find an appropriate payment rule p so that both
v(θi, X(θi)) − p(θi) − v(θi, X(θ′

i)) ≥ 0 and v(θ′
i, X(θi)) −

p(θi) − v(θ′
i, X(θ′

i)) < 0 hold. Similarly, if Eq. 3 does not
hold, we can show that finding an appropriate payment rule
is impossible.

This theorem indicates that if an allocation rule is weakly
monotone, we can always find an appropriate payment rule
to implement the allocation rule.

We introduce several notations for false-name-proofness.
Let us consider a situation where bidder i uses k false iden-
tifiers id1, . . . , idl, . . . , idk. When an identifier idl reports
his type θidl , we represent the allocation rule for idl as

X+Ik
−l

(θidl) = X(θidl , Θ−i ∪ Ik
−l), where Ik

−l =
Sk

j �=l{θidj}.
Similarly, we represent the payment rule as p+Ik

−l
(θidl) =

p(θidl , Θ−i ∪ Ik
−l).

Definition 6 (false-name-proofness).
A mechanism M(X, p) is false-name-proof if for all k + 1

types of θi, θid1 , . . . , θidl , . . . , θidk ,

v(θi, X(θi)) − p(θi)

≥ v(θi,
Sk

l=1 X+Ik
−l

(θidl)) −
Pk

l=1 p+Ik
−l

(θidl)
(4)

holds.

3. CHARACTERIZATION OF FALSE-NAME-
PROOF ALLOCATION RULES

In this section, we introduce a simple condition called sub-
additivity that fully characterizes false-name-proof alloca-
tion rules when coupled with weak-monotonicity. First, we
introduce a weaker condition of false-name-proofness, which
we call weak false-name-proofness (Definition 7) and show
that, if a mechanism is strategy-proof and weakly false-
name-proof, it is also false-name-proof (Theorem 2). Sec-
ond, we define a notion called FN-implementability (Def-
inition 8), i.e., an allocation rule X is FN-implementable
if there exists a payment rule p so that the mechanism
M(X, p) is false-name-proof. Finally, we introduce sub-
additivity (Definition 9) and prove that X is FN-
implementable if and only if X satisfies weak-monotonicity
and sub-additivity (Theorem 3).

Definition 7 (weak false-name-proofness).
A mechanism M(X, p) is weakly false-name-proof if for

all k + 1 types of θi, θid1 , . . . , θidk such that X(θi) =Sk
l=1 X+Ik

−l
(θidl), Eq. 4 holds.

The left side of Eq. 4 indicates the utility of bidder i who
truthfully declares his type θi using single identifiers. The
right side indicates the utility of i who declares his false
types θid1 , . . . , θidk using k identifiers id1, . . . , idk.

Weak false-name-proofness is weaker than (strong) false-
name-proofness, since we assume the obtained goods do not
change by using multiple identifiers. However, the next the-
orem shows that if a mechanism is strategy-proof and weakly
false-name-proof, then it is (strongly) false-name-proof.

Theorem 2. A mechanism is false-name-proof if and only
if it is strategy-proof and weakly false-name-proof.

Proof. Clearly, the definition of false-name-proofness
subsumes that of weak false-name-proofness. If we assume
a bidder can declare a null type, whose valuation of every
bundle is zero, and the mechanism never allocates a good
to a null type, the definition of false-name-proofness also
subsumes strategy-proofness.

We are going to prove that if a mechanism is strategy-
proof and weakly false-name-proof, then it is also (strongly)
false-name-proof. Assume that a mechanism is not (strongly)
false-name-proof; i.e., Eq. 4 does not hold, even though the
mechanism is weakly false-name-proof and strategy-proof.
More specifically, we assume there exists k + 1 types θi,
θid1 , . . . , θidk , where the following condition holds:

v(θi, X(θi))−p(θi) < v(θi,

k[
l=1

X+Ik
−l

(θidl))−
kX

l=1

p+Ik
−l

(θidl).

(5)
From consumer sovereignty, there exists θ′

i such that
X(θ′

i) =
Sk

l=1 X+Ik
−l

(θidl). From Eq. 2 for θi and θ′
i, the
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utility of bidder i cannot increase when he declares θ′
i instead

of θi. From Definition 7, as long as the obtained goods do
not change by using multiple identifiers, the payment of θ′

i is
smaller than the sum of the payments of multiple identifiers,
i.e., p(θ′

i) ≤
Pk

l=1 p+Ik
−l

(θidl) holds. Accordingly, we obtain

v(θi, X(θi)) − p(θi) ≥ v(θi, X(θ′
i)) − p(θ′

i)
≥ v(θi, X(θ′

i))

−Pk
l=1 p+Ik

−l
(θidl)

= v(θi,
Sk

l=1 X+Ik
−l

(θidl))

−Pk
l=1 p+Ik

−l
(θidl).

This contradicts Eq. 5.

Theorem 2 shows that if a strategy-proof mechanism is
weakly false-name-proof, it is also (strongly) false-name-
proof. Therefore, in the rest of this paper, we restrict our
attention to weakly false-name-proof mechanisms.

Next, let us introduce a notion called false-name(FN)-
implementability for an allocation rule. This definition sub-
sumes the definition of implementability.

Definition 8 (FN-implementability).
An allocation rule X is FN-implementable, if there exists a
payment rule p such that for every θi, θ

′
i ∈ Θ, Eq. 2 holds,

and this payment rule satisfies Eq. 4 simultaneously for all
k+1 types θi, θid1 , . . . , θidk , where X(θi) =

Sk
l=1 X+Ik

−l
(θidl).

If an allocation rule X is FN-implementable, we can find
an appropriate payment rule p so that the mechanism
M(X, p) becomes weakly false-name-proof. Since Defini-
tion 8 assumes that X is implementable, the mechanism
M(X, p) is (strongly) false-name-proof.

Now, we are ready to introduce sub-additivity, which fully
characterizes FN-implementability when coupled with weak-
monotonicity.

Definition 9 (sub-additivity).
An allocation rule X satisfies sub-additivity, if for all k + 1
types θi, θid1 , . . . , θidk such that X(θi) =

Sk
l=1 X+Ik

−l
(θidl),

∀θ′
i where v(θ′

i, X(θ′
i)) = 0,

∀θ′
idl

where

8><
>:

X+Ik
−l

(θ′
idl

) ⊇ X+Ik
−l

(θidl),

v(θ′
idl

, X+Ik
−l

(θ′
idl

))

= v(θ′
idl

, X+Ik
−l

(θidl)),

(l = 1, 2, . . . , k)

v(θ′
i, X(θi)) ≤

kX
l=1

v(θ′
idl

, X+Ik
−l

(θidl)) (6)

holds.

An intuitive explanation why sub-additivity holds when
an allocation rule X is FN-implementable is as follows. For
simplicity, let us assume k = 2, i.e., only two false iden-
tifiers id1, id2 are used. If X is FN-implementable, there
exists a payment rule that satisfies p(θi) ≤ p+{θid2}(θid1) +

p+{θid1}(θid2) (as illustrated in the middle of Figure 1).

The left side of Eq. 6 indicates the valuation of a bidder
who declares θ′

i, where his valuation on X(θ′
i) is zero. Thus,

it must be smaller than p(θi); otherwise this bidder has an
incentive to pretend that his type is θi and to obtain X(θi).
This fact is illustrated in the top of Figure 1.

Figure 1: Sub-additivity

Furthermore, if there are only two false identifiers id1 and
id2, the right side of Eq. 6 becomes v(θ′

id1 , X+{θid2}(θid1))+

v(θ′
id2 , X+{θid1}(θid2)), where θ′

id1 is a type that can obtain

X+{θid2}(θid1) or any superset. Similarly, θ′
id2 can obtain

X+{θid1}(θid2) (or any superset). Then v(θ′
id1 ,X+{id2}(θid1))

must be greater than p+{θid2}(θid1); otherwise a bidder with

type θid1 has an incentive to pretend that his type is θ′
id1

and to reduce his payment. Similarly, v(θ′
id2 , X+{θid1}(θid2))

must be greater than p+{id1}(θid2). This fact is illustrated
in the bottom of Figure 1.

From these facts, the sub-additivity condition must hold.
We will show a more rigorous proof in Lemma 1.

Furthermore, as long as the sub-additivity condition and
weak-monotonicity hold, we can choose an appropriate pay-
ment rule p so that p(θi) ≤ p+{θid2}(θid1) + p+{θid1}(θid2)

holds. We will show a more detailed explanation in Lemma 2.

Theorem 3. An allocation ruleX is FN-implementable if
and only if X satisfies weak-monotonicity and sub-additivity.

This theorem shows that if an allocation rule satisfies
weak-monotonicity and sub-additivity, we can always find
a payment rule so that the obtained mechanism is false-
name-proof. If it does not satisfy weak-monotonicity or sub-
additivity, it is impossible to find an appropriate payment
rule. The following lemmas prove this theorem.

Lemma 1. If an allocation rule X is FN-implementable,
X satisfies weak-monotonicity and sub-additivity.

Proof. Theorem 1 already proves that if an allocation
rule X is implementable, it satisfies weak-monotonicity. If
X is FN-implementable, it is automatically implementable.
Thus, X should satisfy weak-monotonicity.

To prove this lemma, it suffices to show that if X is
FN-implementable, it satisfies sub-additivity. We are go-
ing to derive a contradiction by assuming Eq. 6 does not
hold, although X is FN-implementable and satisfies weak-
monotonicity. More specifically, we assume when X(θi) =Sk

l=1 X+Ik
−l

(θidl) holds, there exists types θ′
i, θ

′
id1 , . . . , θ′

idk
,

which satisfy the following condition:

∃θ′
i where v(θ′

i, X(θ′
i)) = 0,

∃θ′
idl

where

8><
>:

X+Ik
−l

(θ′
idl

) ⊇ X+Ik
−l

(θidl),

v(θ′
idl

, X+Ik
−l

(θ′
idl

))

= v(θ′
idl

, X+Ik
−l

(θidl)),

(l = 1, 2, . . . , k)
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v(θ′
i, X(θi)) >

kX
l=1

v(θ′
idl

, X+Ik
−l

(θidl)). (7)

Since X is FN-implementable, there exists a payment rule
p such that M(X, p) is strategy/false-name-proof. Since we
assume v(θ′

i, X(θ′
i)) = 0, from individual rationality, p(θ′

i) =
0 holds. From strategy-proofness, v(θ′

i, X(θ′
i))−p(θ′

i) = 0 ≥
v(θ′

i, X(θi)) − p(θi) holds. Thus, we obtain

v(θ′
i, X(θi)) ≤ p(θi). (8)

Also, from the fact that M(X, p) is false-name-proof, Eq. 4
derives

p(θi) ≤
kX

l=1

p+Ik
−l

(θidl). (9)

Next, to derive

kX
l=1

p+Ik
−l

(θidl) =

kX
l=1

p+Ik
−l

(θ′
idl

),

we are going to show that p+Ik
−l

(θidl) = p+Ik
−l

(θ′
idl

). Since

we assume v(θ′
idl

, X+Ik
−l

(θ′
idl

)) = v(θ′
idl

, X+Ik
−l

(θidl)), from

Eq. 2, we obtain p+Ik
−l

(θ′
idl

) ≤ p+Ik
−l

(θidl). Also, since we

assume X+Ik
−l

(θ′
idl

) ⊇ X+Ik
−l

(θidl) and free disposal, we ob-

tain v(θidl ,X+Ik
−l

(θ′
idl

)) ≥ v(θidl ,X+Ik
−l

(θidl)). Therefore,

from Eq. 2, we obtain p+Ik
−l

(θidl) ≤ p+Ik
−l

(θ′
idl

). Thus, the

payment of θ′
idl

equals that of θidl .
Finally, from Eqs.1 and 7, p+Ik

−l
(θ′

idl
)≤v(θ′

idl
,X+Ik

−l
(θ′

idl
))=

v(θ′
idl

, X+Ik
−l

(θidl)) holds for θ′
idl

and

kX
l=1

p+Ik
−l

(θ′
idl

) ≤
kX

l=1

v(θ′
idl

, X+Ik
−l

(θidl)) (10)

holds. As a result, from Eqs. 8, 9, and 10, we obtain

v(θ′
i, X(θi)) ≤

kX
l=1

v(θ′
idl

, X+Ik
−l

(θidl)).

This contradicts Eq. 7.

Lemma 2. If an allocation rule X satisfies weak-monotonicity
and sub-additivity, then X is FN-implementable.

Proof. Theorem 1 already proves that, if an allocation
rule X satisfies weak-monotonicity, it is implementable. Thus,
if X satisfies weak-monotonicity, there exists a payment rule
p that satisfies Eq. 2. To prove this lemma, we show that if
X satisfies sub-additivity, we can choose a payment rule p
so that p also satisfies Eq. 4.

We are going to derive a contradiction assuming that an
allocation rule X, which satisfies weak-monotonicity and
sub-additivity, is not FN-implementable. More specifically,
we assume that for any payment rule p that implements X,
there exists a bidder with type θi, who can increase his profit
by using false identifiers θid1 , . . . , θidk .

∀p,

∃(θi, θid1 , . . . , θidk) s.t. X(θi) =
Sk

l=1 X+Ik
−l

(θidl),

v(θi, X(θi)) − p(θi)

< v(θi,
Sk

l=1 X+Ik
−l

(θidl)) −
Pk

l=1 p+Ik
−l

(θidl).

Since the obtained goods do not change by using multiple
identifiers, p(θi) >

Pk
l=1 p+Ik

−l
(θidl) holds. Let us choose γ

(> 0) such that

p(θi) − γ =

kX
l=1

p+Ik
−l

(θidl) (11)

holds.
Then, let us choose a small enough value ε such that 0 <

ε < γ
k+1

holds. Also, let us define type θ′′
i as follows:

v(θ′′
i , Y ) =

j
p(θi) − ε if Y ⊇ X(θi),
0 otherwise.

Furthermore, for each l = 1, . . . , k, let θ′′
idl

be the following
type:

v(θ′′
idl

, Y ) =

j
p+Ik

−l
(θidl) + ε if Y ⊇ X+Ik

−l
(θidl),

0 otherwise.

From Lemmas 3 and 4 in Appendix, we can show that those
k + 1 types satisfy the preconditions of sub-additivity. As a
result, the following condition holds: for θ′′

i and θ′′
idl

,

v(θ′′
i , X(θi)) ≤ Pk

l=1 v(θ′′
idl

, X+Ik
−l

(θidl)) .

By substituting the definitions of v(θ′′
i , ·) and v(θ′′

idl
, ·) into

this equation, we obtain

p(θi) ≤
kX

l=1

p+Ik
−l

(θidl) + (k + 1)ε. (12)

Here, by substituting Eq. 11 into Eq. 12, we obtain γ ≤
(k + 1) ε. Thus, this contradicts the assumption of ε <

γ
k+1

.

4. DISCUSSIONS
The proposed sub-additivity condition enables us to verify

whether a mechanism is false-name-proof. In this section, we
demonstrate whether the sub-additivity condition is satisfied
in several allocation rules.

Claim 1. A Pareto efficient allocation rule does not sat-
isfy sub-additivity.

Assume there are two bidders 1 and 2 and two goods a and
b for sale in a combinatorial auction. Assume that bidder
2’s type is defined as follows:

bidder 2 : (0, 0, 10)

Note that (0, 0, 10) represents the valuation of bidder 2 over
a, b, and {a, b}, respectively.

Let us examine an allocation rule for bidder 1. For an
allocation rule that achieves Pareto efficiency, bidder 1 ob-
tains {a, b} if he has a greater value than 10 on {a, b}.
Thus, if he has a type θ′ such that v(θ′, {a, b}) = 10 − ε
and v(θ′, {a}) = v(θ′, {b}) = 0, he obtains no good, i.e.,
X(θ′) = ∅.

On the other hand, let us consider the situation where
bidder 1 uses two identifiers: bidders 1′ and 3. The declared
types of bidders 1′ and 3 are as follows:

bidder 1′ : (8, 0, 8)
bidder 2 : (0, 0, 10)
bidder 3 : (0, 7, 7)
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Since X is Pareto efficient, a is allocated to bidder 1′ and
b is allocated to bidder 3. Thus, for bidder 1, the obtained
goods do not change by using two identifiers. Let bidder
1′ have θ′

1 such that v(θ′
1, {a}) = 3 + ε. He is allocated a.

Similarly, let bidder 3 have θ3 such that v(θ3, {b}) = 2 + ε.
He is allocated b. Thus, by a Pareto efficient allocation rule,
we obtain

v(θ′, {a, b}) = 10 − ε > v(θ′
1, {a}) + v(θ3, {b})

= (3 + ε) + (2 + ε).

Thus, it does not satisfy sub-additivity.
The fact that there exists no false-name-proof, Pareto ef-

ficient mechanism is already proved in [20]. However, our
proof is much simpler, since we can ignore a payment rule
and concentrate on the allocation rule.

Claim 2. The allocation rule in the Minimal Bundle mech-
anism [17] satisfies sub-additivity.

To describe the Minimal-Bundle (MB) mechanism, we
first need to define a concept called minimal bundle).

Definition 10 (minimal bundle).
Bundle B is called minimal for bidder i if ∀B′ ⊂ B, B′ 	=
B, v(θi, B

′) < v(θi, B) holds.

Notice that a bidder can have multiple minimal bundles.
In the MB mechanism, bidder i can obtain bundle B if B is
minimal for i and its valuation on B is larger than all the
minimal bundles of the other bidders that conflict with B.

The allocation rule can be described as follows:

X(θi) =

8>>><
>>>:

Y if there exists Y s.t. Y is a minimal bundle
for i and ∀θj ∈ Θ−i, ∀Y ′, where Y ∩Y ′ 	=∅
and Y ′ is a minimal bundle for j,
v(θi, Y ) ≥ v(θj , Y

′) holds.
∅, otherwise.

Here, Θ−i represents the set of types of other bidders. More
precisely, if multiple minimal bundles of i satisfy this con-
dition, we choose the best bundle that maximizes i’s utility.
For simplicity, we omit the procedure for tie-breaking.

Let us consider a situation where X(θi)=
Sk

l=1X+Ik
−l

(θidl)

holds, and denote Y = X(θi). Let us choose (θj∗ , Y ′
max) =

arg maxθj ,Y ′ v(θj , Y
′), where Y ∩ Y ′ 	= ∅,∀θj ∈ Θ−i and

Y ′ is a minimal bundle for j. By choosing θ′
i such that

v(θ′
i, X(θ′

i)) = 0,

v(θ′
i, X(θi)) < v(θj∗ , Y ′

max)

holds.
Since we assume X(θi) =

Sk
l=1 X+Ik

−l
(θidl) holds, for at

least one identifier idh, X+Ik
−h

(θidh) and Y ′
max share some

common element. Furthermore, we can choose θ′
idh

such
that X+Ik

−h
(θ′

idh
) ⊇ X+Ik

−h
(θidh), v(θ′

idh
, X+Ik

−h
(θidh)) ≥

v(θj∗ , Y ′
max) holds.

As a result, we obtain

v(θ′
i, X(θi)) < v(θj∗ , Y ′

max)
≤ v(θ′

idh
, X+Ik

−h
(θidh))

≤ v(θ′
idh

, X+Ik
−h

(θidh))

+
P

l�=h v(θ′
idl

, X+Ik
−l

(θidl))

=
Pk

l=1 v(θ′
idl

, X+Ik
−l

(θidl)).

Thus, sub-additivity condition is satisfied.

Claim 3. The allocation rule in the Leveled Division Set
mechanism [19] satisfies sub-additivity.

The Leveled Division Set mechanism is very complicated.
For simplicity, we describe the allocation rule when there
are only two goods a and b , and the reserve price for each
is r.

X(θi) =

8>>>>>>>>>>><
>>>>>>>>>>>:

{a, b} if v(θi, {a, b}) ≥ 2 × r and
∀θj ∈ Θ−i, v(θi, {a, b}) ≥ v(θj , {a, b}),

{a} if v(θi, {a}) ≥ r and
∀θj ∈ Θ−i, v(θj , {a, b}) < 2 × r, and
v(θi, {a}) ≥ v(θj , {a}),

{b} if v(θi, {b}) ≥ r and
∀θj ∈ Θ−i, v(θj , {a, b}) < 2 × r, and
v(θi, {b}) ≥ v(θj , {b}),

∅, otherwise.

It is clear that X satisfies sub-additivity when X(θi) is a
or b. Thus, we show that X satisfies sub-additivity when
X(θi) = {a, b}. Let us assume that X+{θid2}(θid1) = {a},
and X+{θid1}(θid2) = {b}. Therefore, there exists no θj such

that v(θj , {a, b}) ≥ 2×r for θj ∈ Θ−i. Therefore, for θ′
i such

that v(θ′
i, X(θ′

i)) = 0, v(θ′
i, {a, b})) < 2 × r always holds.

On the other hand, it is clear that for types θ′
id1 and θ′

id2
such that X+{θid2}(θ

′
id1) = {a} and X+{θid1}(θ

′
id2) = {b},

v(θ′
id1 , {a}) ≥ r and v(θ′

id2 , {b}) ≥ r must hold.
Accordingly, we obtain

v(θ′
i, X(θi)) < 2 × r

≤ v(θ′
id1 , X+{θid2}(θid1))

+v(θ′
id2 , X+{θid1}(θid2)),

and sub-additivity is satisfied.

Claim 4. The allocation rule in the GM-SMA [18] does
not satisfy sub-additivity.

The allocation of GM-SMA is based on a Pareto efficient
allocation. However, the mechanism adjusts the payment of
bidder i who obtains bundle B ⊆ G based on sub-modular
approximation defined as follows:

p(θi, B) = U∗(Θ−i, G) − V ∗(Θ−i, G \ B).

Here, V ∗(Θ−i, G\B) is a social surplus when optimally allo-
cating goods G\B for bidders Θ−i. U∗(Θ−i, G) is defined a
similar way but we approximate bidders’ valuations so that
they satisfy sum-modularity defined as follows.

Definition 11 (sub-modularity).
For all N ′ ⊆ N , B′, B′′ ⊆ G, the following condition holds:

U∗(ΘN′ , B′) + U∗(ΘN′ , B′′)
≥ U∗(ΘN′ , B′ ∪ B′′) + U∗(ΘN′ , B′ ∩ B′′).

The payment of GM-SMA is larger than (or at least equal
to) the VCG payment. If payment p(θi, B) becomes larger
than valuation v(θi, B), bundle B is not allocated to bidder
i.

Assume there are two goods a and b. Let us consider
the allocation rule for bidder 1, given the type of bidder 2
described as follows:

bidder 2 : (0, 0, 10)

This valuation does not satisfy sub-modularity; i.e., for
bidder 2, the valuations for a only and b only are 0, while
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having a and b together is 10. Let us assume we approximate
this valuation as follows1:

bidder 2 : (5, 5, 10)

If bidder 1 is interested in a only, he cannot obtain it when
his (declared) valuation for a is less than 10. In this case, let
us consider a type θ1 such that v(θ1, {a}) = 10 − ε. Then,
X(θ1) = ∅ and v(θ1, X(θ1)) = 0 hold.

Now, let us consider another situation where bidder 1 uses
two identifiers 1′ and 3, and declares the following types:

bidder 1′ : (10 − ε, 0, 10 − ε)
bidder 2 : (0, 0, 10)
bidder 3 : (0, 5 − ε, 5 − ε)

Let us choose a type θ1′ such that v(θ1′ , {a}) = 5 + 2ε.
When bidders 2 and 3 exist, a is allocated to θ1′ . Also, let
us choose a type θ3 such that v(θ3, {b}) = 0. When bidders
1’ and 2 exist, ∅ is allocated to θ3. Therefore, we obtain

v(θ1, {a}) = 10 − ε > v(θ1′ , {a}) + v(θ3, ∅)
= 5 + 2ε + 0.

Thus, this allocation rule does not satisfy sub-additivity.
This fact means that there exists no payment rule p that

the mechanism M(X, p) is false-name-proof. In the initial
example, if the valuation of bidder 1 for a is 9, the allocation
rule allocates ∅ for bidder 1 and his payment is 0. On the
other hand, in the second example where bidder 1 uses two
identifiers, bidder 1′ obtains a and bidder 3 obtains ∅ (since
the payment with sub-modular approximation is 5, which is
larger than bidder 3’s valuation 5 − ε). Thus, the payments
of 1′ and 3 are 5 and 0, respectively. As a result, bidder 1
can increase his utility using false-names. Thus, GM-SMA
is not false-name-proof.

Claim 5. The allocation rule in the Matsuo mechanism [8]
does not satisfy sub-additivity.

The Matsuo mechanism first finds a Pareto efficient alloca-
tion. Then, it identifies a set of bidders (called shill group),
who can potentially serve as false-names of a single bidder.
More specifically, when excluding bidder i, if another bidder
j no longer belongs to the Pareto efficient allocation, then
the mechanism regards i and j as a shill group. Next, it
assumes a set of goods that are allocated to the members of
the shill group as a single good, and re-calculates a Pareto
efficient allocation. If goods a and b are assumed as a single
good, then to obtain good a, a bidder needs to defeat other
bidders who want b and {a, b}, as well as a.

Assume there are two goods a and b. Let us consider the
allocation rule for bidder 1, given the types of bidders 2 and
3 described as follows:

bidder 2 : (0, 0, 10)
bidder 3 : (0, 9, 9)

If bidder 1 is interested in a only, he cannot obtain it when
his (declared) valuation for a is less than 10. For example,
if his valuation is 9, he is originally included in a Pareto
efficient allocation. However, bidders 1 and 3 are considered
as a shill group, since by excluding bidder 3, bidder 1 is
no longer in the Pareto efficient allocation. Since bidder 1
needs to defeat bidder 2 to obtain a, his valuation for a

1We can construct a similar example for different approxi-
mations.

must be larger than 10. In this case, let us consider a type
θ′ such that v(θ′, {a}) = 10 − ε. Then, X(θ′) = ∅ and
v(θ′, X(θ′)) = 0 hold.

Now, let us consider another situation where bidder 1 uses
three identifiers, 1′, 4, and 5:

bidder 1′ : (9, 0, 9)
bidder 2 : (0, 0, 10)
bidder 3 : (0, 9, 9)
bidder 4 : (2, 0, 2)
bidder 5 : (0, 8, 8)

In this case, bidders 1′ and 3 are originally included in the
Pareto efficient allocation. Even if we exclude bidder 3 (or
bidder 1), bidder 1 (or bidder 3) remains in the Pareto effi-
cient allocation. Thus, no shill group is identified.

Let us choose a type θ′
1 such that v(θ′

1, {a}) = 2+ε. When
bidders 2–5 exist, a is allocated to θ′

1. Also, let us choose a
type θ′

4 such that v(θ′
4, {a}) = 0. When bidders 1–3 and 5

exist, ∅ is allocated to θ′
4. Furthermore, let us choose a type

θ′
5 such that v(θ′

5, {b}) = 0. When bidders 1–3 and 4 exist,
∅ is allocated to θ′

5.
Therefore, we obtain

v(θ′, {a}) = 10 − ε
> v(θ′

1, {a}) + v(θ′
4, ∅) + v(θ′

5, ∅)
= 2 + ε + 0 + 0.

Thus, this allocation rule does not satisfy sub-additivity.
This fact means that there exists no payment rule that sat-
isfies FN-implementability for this allocation rule. The Mat-
suo mechanism uses VCG payment. In the initial example,
if the valuation of bidder 1 for a is 9, the allocation rule allo-
cates ∅ for bidder 1 and his payment is 0. On the other hand,
in the second example where bidder 1 uses three identifiers,
bidder 1′ obtains a and both bidders 4 and 5 obtain ∅. The
payments of 1′, 4, and 5 are 2, 0, and 0, respectively. As a
result, bidder 1 can increase his utility using false-names.

It is intuitively natural to believe that GM-SMA and Mat-
suo mechanism are false-name-proof, since false-name ma-
nipulation is not profitable in these mechanisms as long as
the goods obtained by each false identifier are non-empty
(e.g., a bidder who wants {a, b} obtains a with one identi-
fier and b with another identifier). However, in the above
examples, a bidder can decrease his payment by submitting
false-name-bids that do not receive any good.

Detecting such a subtle failure of a mechanism is quite
difficult if we rely on standard proof techniques for false-
name-proofness. By utilizing the sub-additivity condition
introduced in this paper, we can easily verify whether a
mechanism is false-name-proof.

5. CONCLUSIONS
We identified a simple condition called sub-additivity, which

characterizes false-name-proof allocation rules of combina-
torial auctions. We proved that an allocation rule is FN-
implementable, i.e., we can construct a false-name-proof mech-
anism based on the allocation rule, if and only if it satisfies
weak-monotonicity and sub-additivity.

As far as the authors are aware, this is the first attempt
to characterize false-name-proof allocation rules. Our pro-
posed characterization is useful for developing new mecha-
nisms or for verifying existing mechanisms. To demonstrate
the power of our characterization, we verified existing false-
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name-proof mechanisms and found that two mechanisms,
which were believed to be false-name-proof, are actually not.

In future works, we hope to examine several theoreti-
cal properties of false-name-proof allocation rules, e.g., the
upper-bound of possible social surplus for false-name-proof
mechanisms, by utilizing our characterization. Furthermore,
we would like to extend our characterization to broader so-
cial choice functions such as voting and collective decision-
making. Finally, we are planning to examine the charac-
terization of allocation rules that satisfy robustness against
other manipulations, such as group-strategy-proofness and
collusion-proofness [11, 9].
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APPENDIX
Lemma 3. Assume a payment rule p implements an al-

location rule X. Also, let us assume a type θ′′
i satisfies the

following condition:

v(θ′′
i , Y ) =

j
p(θi) − ε if Y ⊇ X(θi),
0 otherwise.

Then v(θ′′
i , X(θ′′

i )) = 0 holds.

Proof. To prove this lemma, we show that X(θ′′
i ) +

X(θi) for θ′′
i holds. We derive a contradiction by assuming

X(θ′′
i ) ⊇ X(θi) holds. Since we assume the mechanism is

individually rational (Definition 2), the following condition
must hold:

p(θ′′
i ) ≤ v(θ′′

i , X(θ′′
i ))

= p(θi) − ε.

From free disposal and X(θ′′
i ) ⊇ X(θi), v(θi, X(θ′′

i )) ≥
v(θi, X(θi)) holds. By substituting this into Eq. 2, we obtain

p(θi) ≤ p(θ′′
i ).

Thus, p(θi) ≤ p(θ′′
i ) ≤ p(θi) − ε holds. This contradicts the

assumption of ε > 0.

Lemma 4. Assume a payment rule p implements an allo-
cation rule X. Also, let us assume types θ′′

idl
( l=(1, . . . , k) )

satisfy the following conditions:

v(θ′′
idl

, Y ) =

j
p+Ik

−l
(θidl) + ε if Y ⊇ X+Ik

−l
(θidl),

0 otherwise.

Then X+Ik
−l

(θ′′
idl

) ⊇ X+Ik
−l

(θidl) holds. Thus,

v(θ′′
idl

, X+Ik
−l

(θ′′
idl

)) = v(θ′′
idl

, X+Ik
−l

(θidl)) also holds.

Proof. We derive a contradiction by assuming
X+Ik

−l
(θ′′

idl
) + X+Ik

−l
(θidl). By the above assumption,

v(θ′′
idl

,X+Ik
−l

(θ′′
idl

)) = 0 . Since we assume the mechanism is

individually rational, p+Ik
−l

(θ′′
idl

) = 0 holds. Since p imple-

ments X, the following condition holds (otherwise, θ′′
idl

has
an incentive to pretend to be θidl): v(θ′′

idl
, X+Ik

−l
(θidl)) −

p+Ik
−l

(θidl) ≤ 0. From the above condition, we derive

p+Ik
−l

(θidl) ≥ v(θ′′
idl

, X+Ik
−l

(θidl))

= p+Ik
−l

(θidl) + ε.

This contradicts the assumption of ε > 0. Thus, for θ′′
idl

,
X+Ik

−l
(θ′′

idl
) ⊇ X+Ik

−l
(θidl) always holds.
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